Functional expression of a low-affinity zinc uptake transporter (FrZIP2) from pufferfish (Takifugu rubripes) in MDCK cells.

نویسندگان

  • Andong Qiu
  • Christer Hogstrand
چکیده

Zinc is a vital micronutrient to all organisms and it is therefore very important to determine the mechanisms that regulate cellular zinc uptake. Previously, we reported on zinc uptake transporters from zebrafish (Danio rerio; DrZIP1) and Fugu pufferfish (Takifugu rubripes; FrZIP1) that facilitated cellular zinc uptake of high affinity (K(m)<0.5 microM) in both CHSE214 [chinook salmon (Oncorhynchus tshawytscha) embryonic 214] cells and Xenopus laevis oocytes. To investigate additional biochemical pathways of zinc uptake in fish, we molecularly cloned the second fish member (FrZIP2) of the SLC39 subfamily II from Fugu pufferfish gill. Functional characterization suggests that FrZIP2 stimulated zinc uptake in a temperature-, time-, concentration- and pH-dependent manner when overexpressed in MDCK cells (Madin-Darby canine kidney cells). In comparison with FrZIP1 and DrZIP1 (<0.5 microM), FrZIP2 appears to represent a low-affinity zinc uptake transporter (K(m)=13.6 microM) in pufferfish. FrZIP2 protein was selective for zinc, but it might also transport Cu2+, since 20 times excess of Cu2+ completely abolished its zinc uptake activity. The zinc uptake by FrZIP2 was stimulated in a slightly acidic medium (pH 5.5-6.5) and was completely blocked at pH 7.5 and above, suggesting that an inward H+ gradient might provide a driving force for zinc transport by FrZIP2. Furthermore, FrZIP2-mediated zinc uptake activity was slightly inhibited by 0.5 mM HCO3-, indicating that FrZIP2 may employ a different mechanism of zinc translocation from the assumed HCO3--coupled zinc transport used by human SLC39A2. The FrZIP2 gene was expressed in all the tissues studied herein, with especially high levels in the ovary and intestines. Thus FrZIP2 may be a prominent zinc uptake transporter of low affinity in many cell types of Fugu pufferfish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning and functional characterization of a high-affinity zinc importer (DrZIP1) from zebrafish (Danio rerio).

Zinc is a vital micronutrient to all organisms and a potential toxicant to aquatic animals. It is therefore of importance to understand the mechanism of zinc regulation. In the present study, we molecularly cloned and functionally characterized a zinc transporter of the SLC39A family [commonly referred to as the ZIP (Zrt- and Irt-related protein) family] from the gill of zebrafish (Danio rerio)...

متن کامل

Identification and proximal tubular localization of the Mg²⁺ transporter, Slc41a1, in a seawater fish.

The second most abundant cation in seawater (SW), Mg²⁺, is present at concentrations of ~53 mM. Marine teleosts maintain plasma Mg²⁺ concentration at 1-2 mM by excreting Mg²⁺ into the urine. Urine Mg²⁺ concentrations of SW teleosts exceed 70 mM, most of which is secreted by the renal tubular epithelial cells. However, molecular mechanisms of the Mg²⁺ secretion have yet to be clarified. To ident...

متن کامل

Germ cell degeneration in high-temperature treated pufferfish, Takifugu rubripes.

Exogenous factors such as temperature, social behavior, and salinity play a crucial role during the critical sensitive period of sex differentiation in many vertebrates. In fishes, amphibians, and reptiles temperature treatment is known to induce all-male (or female) individuals, and genes related to sex differentiation have been studied. The Japanese pufferfish, Takifugu rubripes, possesses th...

متن کامل

The sex-determining locus in the tiger pufferfish, Takifugu rubripes.

The tiger pufferfish (fugu), Takifugu rubripes, is a model fish that has had its genome entirely sequenced. By performing genomewide linkage analyses, we show that the sex of fugu is determined by a single chromosomal region on linkage group 19 in an XX-XY system.

متن کامل

Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers

The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 390 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005